Graphdiyne as a metal-free catalyst for low-temperature CO oxidation.
نویسندگان
چکیده
The oxidation of CO has attracted great interest in recent years because of its important role in enhancing the catalyst durability in fuel cells and in solving the growing environmental problems caused by CO emission. The usually used noble metal nanocatalysts are costly and require high reaction temperature for efficient operation. We report here a density functional theory (DFT) study of low-temperature CO oxidation catalyzed by graphdiyne, which is a new two-dimensional periodic carbon allotrope with a one-atom-thick sheet of carbon building of sp- and sp(2)-hybridized carbon atoms and has been shown in our recent work to have high catalytic activity for oxygen reduction reactions (ORRs). We studied the adsorption properties of CO and O2 on graphdiyne, simulated the reaction mechanism of CO oxidation involving graphdiyne, and analyzed electronic structures at each step of reaction progress. The simulation results indicate that the adsorption of O2 prevails over CO adsorption on the graphdiyne sheet; the reaction of CO oxidation by adsorbed O2 on graphdiyne proceeds via the Eley-Rideal (ER) mechanism with a decrease in the energy of the system and the energy barrier as low as 0.18 eV in the rate-limiting step. The oxidation reaction includes the breakage of the O-O bond in the adsorbed O2, formation of the metastable carbonate-like intermediate state, and the creation of CO2 molecules. The results presented here demonstrate that graphdiyne is a good, low-cost, and metal-free catalyst for low-temperature CO oxidation, can be used to solve problems caused by environmental CO emission and has a high ability of CO tolerance by its removal through oxidation in fuel cells.
منابع مشابه
Activity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation
The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...
متن کاملActivity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation
The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...
متن کاملOptimization of Preparation Factors for Cerium Oxide Synthesis as a Support for CO PrOx Catalyst
Nanocrystalline ceria has been considered as support for carbon monoxide preferentially oxidation. In this study ceria was prepared by precipitation method and the effects of preparation conditions, such as pH of solution (8-10), aging time (1-12 hr), drying temperature (80-120 °C), calcination time (2-6 hr) and temperature (400-600 °C) were investigated on ceria synthesized powders properties....
متن کاملHydrogen peroxide oxidation of primary alcohols by thiosemicarbazide Schiff base metal complexes
A series of transition metal complexes with two thiosemicarbazide Schiff bases, 1-(4-dimethylaminobenzyl- idene)thiosemicarbazide (ABTSC) and 1-(2-pyridincarboxyl-idene) thiosemicarbazide (TCTS) were synthesized with Co(II), Ni(II), Zn(II), Cd(II) and Ag(I) salts (chloride and acetate). These complexes were characterized by different methods including proton nuclear magnetic resonance (1HNMR),...
متن کاملHydrogen peroxide oxidation of primary alcohols by thiosemicarbazide Schiff base metal complexes
A series of transition metal complexes with two thiosemicarbazide Schiff bases, 1-(4-dimethylaminobenzyl- idene)thiosemicarbazide (ABTSC) and 1-(2-pyridincarboxyl-idene) thiosemicarbazide (TCTS) were synthesized with Co(II), Ni(II), Zn(II), Cd(II) and Ag(I) salts (chloride and acetate). These complexes were characterized by different methods including proton nuclear magnetic resonance (1HNMR),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 12 شماره
صفحات -
تاریخ انتشار 2014